login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A160182
Triangle read by rows, 1 / ((-1)*A129184 * A051731 + I), I = Identity matrix.
2
1, 1, 1, 2, 1, 1, 3, 1, 1, 1, 5, 2, 1, 1, 1, 6, 2, 1, 1, 1, 1, 10, 4, 2, 1, 1, 1, 1, 11, 4, 2, 1, 1, 1, 1, 1, 16, 6, 3, 2, 1, 1, 1, 1, 1, 19, 7, 4, 2, 1, 1, 1, 1, 1, 1, 26, 10, 5, 3, 2, 1, 1, 1, 1, 1, 1
OFFSET
1,4
COMMENTS
Inverse mobius transform (A051731) * the triangle shifts row terms to the right deleting the right border, getting triangle A160183: (1; 2,1; 3,1,1; 5,2,1,1;...).
FORMULA
Triangle read by rows, 1 / ((-1)*A129184 * A051731 + I), I = Identity matrix. The operations shift the inverse Mobius transform (A051731) down, changing the signs to (-1), then add I = (1,1,1,...) as the right border.
EXAMPLE
First few rows of the triangle:
1;
1, 1;
2, 1, 1;
3, 1, 1, 1;
5, 2, 1, 1, 1;
6, 2, 1, 1, 1, 1;
10, 4, 2, 1, 1, 1, 1;
11, 4, 2, 1, 1, 1, 1, 1;
16, 6, 3, 2, 1, 1, 1, 1, 1;
19, 7, 4, 2, 1, 1, 1, 1, 1, 1;
26, 10, 5, 3, 2, 1, 1, 1, 1, 1, 1;
...
MAPLE
A160182den := proc(n, k)
a := add( A129184(n, i)*A051731(i, k), i=1..n) ;
if n =k then
-a+1 ;
else
-a;
end if;
end proc:
N := 20 :
M := Matrix(N, N) :
for n from 1 to N do
for k from 1 to N do
M[n, k] := A160182den(n, k) ;
end do:
end do:
MatrixInverse(M) ; # R. J. Mathar, Aug 04 2015
CROSSREFS
Row sums = A068336. Left border = A003238.
Sequence in context: A124021 A109626 A182285 * A195825 A098824 A181651
KEYWORD
nonn,tabl
AUTHOR
Gary W. Adamson, May 03 2009
STATUS
approved