login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A182285
Triangle read by rows: T(n,k) = sum of all parts in the k-th zone of the last section of the set of partitions of n.
1
1, 1, 2, 1, 1, 3, 1, 1, 1, 4, 4, 1, 1, 1, 1, 1, 5, 5, 1, 1, 1, 1, 1, 1, 1, 6, 6, 6, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 7, 7, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 8, 8, 8, 8, 8, 8, 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
OFFSET
1,3
COMMENTS
Row n lists A000041(n-1) 1's together with A002865(n) n's.
EXAMPLE
Illustration of three arrangements of the last section of the set of partitions of 7 and the zone numbers:
--------------------------------------------------------
Zone \ a) b) c)
--------------------------------------------------------
15 (7) (7) (. . . . . . 7)
14 (4+3) (4+3) (. . . 4 . . 3)
13 (5+2) (5+2) (. . . . 5 . 2)
12 (3+2+2) (3+2+2) (. . 3 . 2 . 2)
11 (1) (1) (1)
10 (1) (1) (1)
9 (1) (1) (1)
8 (1) (1) (1)
7 (1) (1) (1)
6 (1) (1) (1)
5 (1) (1) (1)
4 (1) (1) (1)
3 (1) (1) (1)
2 (1) (1) (1)
1 (1) (1) (1)
.
For n = 7 and k = 12 we can see that in the 12th zone of the last section of 7 the parts are 3, 2, 2, therefore T(7,12) = 3+2+2 = 7.
Written as a triangle begins:
1;
1,2;
1,1,3;
1,1,1,4,4;
1,1,1,1,1,5,5;
1,1,1,1,1,1,1,6,6,6,6;
1,1,1,1,1,1,1,1,1,1,1,7,7,7,7;
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,8,8,8,8,8,8,8;
CROSSREFS
Row n has length A000041(n). Row sums give A138879.
Sequence in context: A108888 A124021 A109626 * A160182 A195825 A098824
KEYWORD
nonn,tabf
AUTHOR
Omar E. Pol, Apr 23 2012
STATUS
approved