Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #20 Dec 01 2013 13:35:01
%S 1,1,2,1,1,3,1,1,1,4,4,1,1,1,1,1,5,5,1,1,1,1,1,1,1,6,6,6,6,1,1,1,1,1,
%T 1,1,1,1,1,1,7,7,7,7,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,8,8,8,8,8,8,8,1,1,
%U 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1
%N Triangle read by rows: T(n,k) = sum of all parts in the k-th zone of the last section of the set of partitions of n.
%C Row n lists A000041(n-1) 1's together with A002865(n) n's.
%e Illustration of three arrangements of the last section of the set of partitions of 7 and the zone numbers:
%e --------------------------------------------------------
%e Zone \ a) b) c)
%e --------------------------------------------------------
%e 15 (7) (7) (. . . . . . 7)
%e 14 (4+3) (4+3) (. . . 4 . . 3)
%e 13 (5+2) (5+2) (. . . . 5 . 2)
%e 12 (3+2+2) (3+2+2) (. . 3 . 2 . 2)
%e 11 (1) (1) (1)
%e 10 (1) (1) (1)
%e 9 (1) (1) (1)
%e 8 (1) (1) (1)
%e 7 (1) (1) (1)
%e 6 (1) (1) (1)
%e 5 (1) (1) (1)
%e 4 (1) (1) (1)
%e 3 (1) (1) (1)
%e 2 (1) (1) (1)
%e 1 (1) (1) (1)
%e .
%e For n = 7 and k = 12 we can see that in the 12th zone of the last section of 7 the parts are 3, 2, 2, therefore T(7,12) = 3+2+2 = 7.
%e Written as a triangle begins:
%e 1;
%e 1,2;
%e 1,1,3;
%e 1,1,1,4,4;
%e 1,1,1,1,1,5,5;
%e 1,1,1,1,1,1,1,6,6,6,6;
%e 1,1,1,1,1,1,1,1,1,1,1,7,7,7,7;
%e 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,8,8,8,8,8,8,8;
%Y Row n has length A000041(n). Row sums give A138879.
%Y Cf. A000041, A002865, A135010, A138121, A182284, A193173.
%K nonn,tabf
%O 1,3
%A _Omar E. Pol_, Apr 23 2012