login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A160072 Numerator of Hermite(n, 7/26). 1
1, 7, -289, -6755, 245761, 10853087, -339364481, -24385611803, 632237079425, 70364353871287, -1430714718511841, -247846519114532947, 3584471689625294209, 1030356783355922692495, -8537671120722083906881, -4935411996685280768234507, 8738108605264000030245121 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..422

FORMULA

From G. C. Greubel, Sep 23 2018: (Start)

a(n) = 13^n * Hermite(n, 7/26).

E.g.f.: exp(7*x - 169*x^2).

a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(7/13)^(n-2*k)/(k!*(n-2*k)!)). (End)

EXAMPLE

Numerators of 1, 7/13, -289/169, -6755/2197, 245761/28561

MATHEMATICA

Table[13^n*HermiteH[n, 7/26], {n, 0, 30}] (* G. C. Greubel, Sep 23 2018 *)

PROG

(PARI) a(n)=numerator(polhermite(n, 7/26)) \\ Charles R Greathouse IV, Jan 29 2016

(PARI) x='x+O('x^30); Vec(serlaplace(exp(7*x - 169*x^2))) \\ G. C. Greubel, Sep 23 2018

(MAGMA) [Numerator((&+[(-1)^k*Factorial(n)*(7/13)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Sep 23 2018

CROSSREFS

Cf. A001022 (denominators).

Sequence in context: A209889 A176072 A096548 * A137435 A220241 A041851

Adjacent sequences:  A160069 A160070 A160071 * A160073 A160074 A160075

KEYWORD

sign,frac

AUTHOR

N. J. A. Sloane, Nov 12 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 1 10:13 EDT 2021. Contains 346385 sequences. (Running on oeis4.)