login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A160070
Numerator of Hermite(n, 3/26).
1
1, 3, -329, -3015, 324561, 5049963, -533358201, -11841399567, 1226401304865, 35698348343763, -3623617724368041, -131531270575023063, 13078016887475307249, 572724884114719465275, -55746631551222341656281, -2877374046284519534650143, 274003299825843713593394241
OFFSET
0,2
LINKS
FORMULA
From G. C. Greubel, Sep 23 2018: (Start)
a(n) = 13^n * Hermite(n, 3/26).
E.g.f.: exp(3*x - 169*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(3/13)^(n-2*k)/(k!*(n-2*k)!)). (End)
EXAMPLE
Numerators of 1, 3/13, -329/169, -3015/2197, 324561/28561, ...
MATHEMATICA
Numerator[HermiteH[Range[0, 20], 3/26]] (* Harvey P. Dale, Jun 11 2018 *)
Table[13^n*HermiteH[n, 3/26], {n, 0, 30}] (* G. C. Greubel, Sep 23 2018 *)
PROG
(PARI) a(n)=numerator(polhermite(n, 3/26)) \\ Charles R Greathouse IV, Jan 29 2016
(PARI) x='x+O('x^30); Vec(serlaplace(exp(3*x - 169*x^2))) \\ G. C. Greubel, Sep 23 2018
(Magma) [Numerator((&+[(-1)^k*Factorial(n)*(3/13)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Sep 23 2018
CROSSREFS
Cf. A001022 (denominators).
Sequence in context: A272318 A320284 A235334 * A112895 A157585 A045645
KEYWORD
sign,frac
AUTHOR
N. J. A. Sloane, Nov 12 2009
STATUS
approved