OFFSET
1,1
COMMENTS
Fermat primes of order 81, established by k=0,2,3,4,5,6 and 7.
The number of Fermat primes of order 81 exceeds the number of known Fermat primes by at least 2.
Next term >= 2^2^17 + 81. - Vincenzo Librandi, Jun 07 2016
Next term >= 2^2^29 + 81. - Charles R Greathouse IV, Jun 07 2016
FORMULA
Intersection of the primes and the set of Fermat numbers F(k,m) = 2^(2^k)+m of order m=81.
EXAMPLE
For n = 5, 2^32 + 81 = 4294967377 prime.
MATHEMATICA
Select[Table[2^(2^n) + 81, {n, 0, 10}], PrimeQ] (* Vincenzo Librandi, Hun 07 2016 *)
PROG
(PARI) g(n, m) = for(x=0, n, y=2^(2^x)+m; if(ispseudoprime(y), print1(y", ")))
(Magma) [a: n in [0..15] | IsPrime(a) where a is 2^(2^n)+81]; // Vincenzo Librandi, Jun 07 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
Cino Hilliard, Apr 30 2009, May 01 2009
EXTENSIONS
Edited by R. J. Mathar, May 08 2009
STATUS
approved