login
A139965
Primes of the form 6x^2+77y^2.
1
83, 101, 131, 173, 227, 293, 461, 563, 677, 941, 1091, 1427, 1613, 1811, 1931, 1949, 1979, 2141, 2243, 2309, 2411, 2477, 2789, 2939, 3251, 3461, 3533, 3659, 3779, 3797, 3923, 3989, 4091, 4133, 4157, 4259, 4373, 4451, 4637, 4787, 5099, 5309
OFFSET
1,1
COMMENTS
Discriminant=-1848. See A139827 for more information.
LINKS
Vincenzo Librandi and Ray Chandler, Table of n, a(n) for n = 1..10000 [First 1000 terms from Vincenzo Librandi]
N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
FORMULA
The primes are congruent to {83, 101, 131, 173, 227, 293, 299, 395, 437, 461, 563, 629, 635, 677, 755, 899, 923, 941, 965, 1091, 1139, 1349, 1403, 1427, 1469, 1517, 1613, 1685, 1781, 1811} (mod 1848).
MATHEMATICA
QuadPrimes2[6, 0, 77, 10000] (* see A106856 *)
PROG
(Magma) [ p: p in PrimesUpTo(6000) | p mod 1848 in [83, 101, 131, 173, 227, 293, 299, 395, 437, 461, 563, 629, 635, 677, 755, 899, 923, 941, 965, 1091, 1139, 1349, 1403, 1427, 1469, 1517, 1613, 1685, 1781, 1811]]; // Vincenzo Librandi, Aug 02 2012
CROSSREFS
Sequence in context: A160028 A115258 A316970 * A180523 A139765 A031412
KEYWORD
nonn,easy
AUTHOR
T. D. Noe, May 02 2008
STATUS
approved