%I #18 Sep 08 2022 08:45:34
%S 83,101,131,173,227,293,461,563,677,941,1091,1427,1613,1811,1931,1949,
%T 1979,2141,2243,2309,2411,2477,2789,2939,3251,3461,3533,3659,3779,
%U 3797,3923,3989,4091,4133,4157,4259,4373,4451,4637,4787,5099,5309
%N Primes of the form 6x^2+77y^2.
%C Discriminant=-1848. See A139827 for more information.
%H Vincenzo Librandi and Ray Chandler, <a href="/A139965/b139965.txt">Table of n, a(n) for n = 1..10000</a> [First 1000 terms from Vincenzo Librandi]
%H N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references)
%F The primes are congruent to {83, 101, 131, 173, 227, 293, 299, 395, 437, 461, 563, 629, 635, 677, 755, 899, 923, 941, 965, 1091, 1139, 1349, 1403, 1427, 1469, 1517, 1613, 1685, 1781, 1811} (mod 1848).
%t QuadPrimes2[6, 0, 77, 10000] (* see A106856 *)
%o (Magma) [ p: p in PrimesUpTo(6000) | p mod 1848 in [83, 101, 131, 173, 227, 293, 299, 395, 437, 461, 563, 629, 635, 677, 755, 899, 923, 941, 965, 1091, 1139, 1349, 1403, 1427, 1469, 1517, 1613, 1685, 1781, 1811]]; // _Vincenzo Librandi_, Aug 02 2012
%K nonn,easy
%O 1,1
%A _T. D. Noe_, May 02 2008