OFFSET
1,1
COMMENTS
For primes p, q, r the sum p^4 + q^4 + r^4 can be prime only if at least one of p, q, r equals 3. This sequence is the special case q = 17, r = 3.
It is conjectured that the sequence is infinite.
There are consecutive primes (1901, 1907) in the sequence.
EXAMPLE
p = 3: 3^4 + 17^4 + 3^4 = 83683 = 67*1249, so 3 is not in the sequence.
p = 1901: 1901^4 + 17^4 + 3^4 = 13059557751203 is prime, so 1901 is in the sequence.
p = 1907: 1907^4 + 17^4 + 3^4 = 13225216032803 is prime, so 1907 is in the sequence.
PROG
(Magma) [ p: p in PrimesUpTo(3250) | IsPrime(p^4+83602) ]; // Klaus Brockhaus, May 03 2009
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Ulrich Krug (leuchtfeuer37(AT)gmx.de), Apr 30 2009
EXTENSIONS
Edited, 409 inserted and extended beyond 2069 by Klaus Brockhaus, May 03 2009
STATUS
approved