login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A159896
Positive numbers y such that y^2 is of the form x^2+(x+839)^2 with integer x.
4
785, 839, 901, 3809, 4195, 4621, 22069, 24331, 26825, 128605, 141791, 156329, 749561, 826415, 911149, 4368761, 4816699, 5310565, 25463005, 28073779, 30952241, 148409269, 163625975, 180402881, 864992609, 953682071, 1051465045
OFFSET
1,1
COMMENTS
(-56, a(1)) and (A130647(n), a(n+1)) are solutions (x, y) to the Diophantine equation x^2+(x+839)^2 = y^2.
lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (843+58*sqrt(2))/839 for n mod 3 = {0, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (1760979+1141390*sqrt(2))/839^2 for n mod 3 = 1.
For the generic case x^2+(x+p)^2=y^2 with p=m^2-2 a prime number in A028871, m>=5, the x values are given by the sequence defined by: a(n) = 6*a(n-3) -a(n-6) +2*p with a(1)=0, a(2) = 2*m+2, a(3) = 3*m^2 -10*m +8, a(4) = 3*p, a(5) = 3*m^2 +10*m +8, a(6) = 20*m^2 -58*m +42. Y values are given by the sequence defined by: b(n) = 6*b(n-3) -b(n-6) with b(1)=p, b(2)= m^2 +2*m +2, b(3)= 5*m^2 -14*m +10, b(4)= 5*p, b(5)= 5*m^2 +14*m +10, b(6)= 29*m^2 -82*m +58. - Mohamed Bouhamida, Sep 09 2009
FORMULA
a(n) = 6*a(n-3) -a(n-6) for n > 6; a(1)=785, a(2)=839, a(3)=901, a(4)=3809, a(5)=4195, a(6)=4621.
G.f.: (1-x)*(785+1624*x+2525*x^2+1624*x^3+785*x^4)/(1-6*x^3+x^6).
a(3*k-1) = 839*A001653(k) for k >= 1.
EXAMPLE
(-56, a(1)) = (-56, 785) is a solution: (-56)^2+(-56+839)^2 = 3136+613089 = 616225 = 785^2.
(A130647(1), a(2)) = (0, 839) is a solution: 0^2+(0+839)^2 = 703921 = 839^2.
(A130647(3), a(4)) = (2241, 3809) is a solution: 2241^2+(2241+839)^2 = 5022081+9486400 = 14508481 = 3809^2.
MATHEMATICA
LinearRecurrence[{0, 0, 6, 0, 0, -1}, {785, 839, 901, 3809, 4195, 4621}, 30] (* Harvey P. Dale, Mar 03 2013 *)
PROG
(PARI) {forstep(n=-56, 10000000, [1, 3], if(issquare(2*n^2+1678*n+703921, &k), print1(k, ", ")))}
(Magma) I:=[785, 839, 901, 3809, 4195, 4621]; [n le 6 select I[n] else 6*Self(n-3) -Self(n-6): n in [1..30]]; // G. C. Greubel, May 17 2018
(PARI) is(n, p=839)=for(m=sqrtint((max(n, 984)^2-p^2)\2)-p\2, n, m^2+(m+p)^2<n^2||return(m^2+(m+p)^2==n^2))
A159896(n)=(matrix(6, 6, i, j, if(i<6, i+1==j, j==4, 6, j==1, -1))^n*[785, 839, 901, 3809, 4195, 4621]~)[1] \\ M. F. Hasler, May 17 2018
CROSSREFS
Cf. A130647, A001653, A156035 (decimal expansion of 3+2*sqrt(2)), A159897 (decimal expansion of (843+58*sqrt(2))/839), A159898 (decimal expansion of (1760979+1141390*sqrt(2))/839^2).
Sequence in context: A231771 A366829 A252389 * A031734 A097776 A031526
KEYWORD
nonn,easy
AUTHOR
Klaus Brockhaus, Apr 30 2009
STATUS
approved