login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A159806
Numerator of Hermite(n, 1/22).
1
1, 1, -241, -725, 174241, 876041, -209955569, -1481967101, 354182766785, 3223271074321, -768186794983409, -8568502794840229, 2036344745450994529, 26919276861667019545, -6379421292327161768689, -97581931299655023987149, 23059717359847942196353921
OFFSET
0,3
LINKS
FORMULA
From G. C. Greubel, Jul 11 2018: (Start)
a(n) = 11^n * Hermite(n, 1/22).
E.g.f.: exp(x - 121*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(1/11)^(n-2*k)/(k!*(n-2*k)!)). (End)
EXAMPLE
Numerator of 1, 1/11, -241/121, -725/1331, 174241/14641, ...
MATHEMATICA
Numerator[Table[HermiteH[n, 1/22], {n, 0, 30}]] (* Vladimir Joseph Stephan Orlovsky, Jun 17 2011 *)
Table[11^n*HermiteH[n, 1/22], {n, 0, 50}] (* G. C. Greubel, Jul 11 2018 *)
PROG
(PARI) a(n)=numerator(polhermite(n, 1/22)) \\ Charles R Greathouse IV, Jan 29 2016
(Magma) [Numerator((&+[(-1)^k*Factorial(n)*(1/11)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, May 21 2018
CROSSREFS
Cf. A001020 (denominators).
Sequence in context: A163623 A142856 A204355 * A142452 A167739 A373708
KEYWORD
sign,frac
AUTHOR
N. J. A. Sloane, Nov 12 2009
STATUS
approved