login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numerator of Hermite(n, 1/22).
1

%I #24 Mar 18 2024 12:03:09

%S 1,1,-241,-725,174241,876041,-209955569,-1481967101,354182766785,

%T 3223271074321,-768186794983409,-8568502794840229,2036344745450994529,

%U 26919276861667019545,-6379421292327161768689,-97581931299655023987149,23059717359847942196353921

%N Numerator of Hermite(n, 1/22).

%H G. C. Greubel, <a href="/A159806/b159806.txt">Table of n, a(n) for n = 0..434</a>

%F From _G. C. Greubel_, Jul 11 2018: (Start)

%F a(n) = 11^n * Hermite(n, 1/22).

%F E.g.f.: exp(x - 121*x^2).

%F a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(1/11)^(n-2*k)/(k!*(n-2*k)!)). (End)

%e Numerator of 1, 1/11, -241/121, -725/1331, 174241/14641, ...

%t Numerator[Table[HermiteH[n, 1/22], {n, 0, 30}]] (* _Vladimir Joseph Stephan Orlovsky_, Jun 17 2011 *)

%t Table[11^n*HermiteH[n, 1/22], {n,0,50}] (* _G. C. Greubel_, Jul 11 2018 *)

%o (PARI) a(n)=numerator(polhermite(n, 1/22)) \\ _Charles R Greathouse IV_, Jan 29 2016

%o (Magma) [Numerator((&+[(-1)^k*Factorial(n)*(1/11)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // _G. C. Greubel_, May 21 2018

%Y Cf. A001020 (denominators).

%K sign,frac

%O 0,3

%A _N. J. A. Sloane_, Nov 12 2009