login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A159641
Positive numbers y such that y^2 is of the form x^2+(x+647)^2 with integer x.
3
613, 647, 685, 2993, 3235, 3497, 17345, 18763, 20297, 101077, 109343, 118285, 589117, 637295, 689413, 3433625, 3714427, 4018193, 20012633, 21649267, 23419745, 116642173, 126181175, 136500277, 679840405, 735437783, 795581917
OFFSET
1,1
COMMENTS
(-35,a(1)) and (A130013(n), a(n+1)) are solutions (x, y) to the Diophantine equation x^2+(x+647)^2 = y^2.
FORMULA
a(n) = 6*a(n-3)-a(n-6) for n > 6; a(1)=613, a(2)=647, a(3)=685, a(4)=2993, a(5)=3235, a(6)=3497.
G.f.: (1-x)*(613+1260*x+1945*x^2+1260*x^3+613*x^4) / (1-6*x^3+x^6).
a(3*k-1) = 647*A001653(k) for k >= 1.
Limit_{n -> oo} a(n)/a(n-3) = 3+2*sqrt(2).
Limit_{n -> oo} a(n)/a(n-1) = (649+36*sqrt(2))/647 for n mod 3 = {0, 2}.
Limit_{n -> oo} a(n)/a(n-1) = (1084467+707402*sqrt(2))/647^2 for n mod 3 = 1.
EXAMPLE
(-35, a(1)) = (-35, 613) is a solution: (-35)^2+(-35+647)^2 = 1225+374544 = 375769 = 613^2.
(A130013(1), a(2)) = (0, 647) is a solution: 0^2+(0+647)^2 = 418609 = 647^2.
(A130013(3), a(4)) = (1768, 2993) is a solution: 1768^2+(1768+647)^2 = 3125824+5832225 = 8958049 = 2993^2.
MATHEMATICA
LinearRecurrence[{0, 0, 6, 0, 0, -1}, {613, 647, 685, 2993, 3235, 3497}, 30] (* Harvey P. Dale, Jun 22 2022 *)
PROG
(PARI) {forstep(n=-36, 10000000, [1, 3], if(issquare(2*n^2+1294*n+418609, &k), print1(k, ", ")))}
CROSSREFS
Cf. A130013, A001653, A156035 (decimal expansion of 3+2*sqrt(2)), A159642 (decimal expansion of (649+36*sqrt(2))/647), A159643 (decimal expansion of (1084467+707402*sqrt(2))/647^2).
Sequence in context: A253434 A253441 A253158 * A100364 A142435 A090869
KEYWORD
nonn,easy
AUTHOR
Klaus Brockhaus, Apr 21 2009
STATUS
approved