login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A130013
Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+647)^2 = y^2.
5
0, 37, 1768, 1941, 2128, 11937, 12940, 14025, 71148, 76993, 83316, 416245, 450312, 487165, 2427616, 2626173, 2840968, 14150745, 15308020, 16559937, 82478148, 89223241, 96519948, 480719437, 520032720, 562561045, 2801839768, 3030974373
OFFSET
1,2
COMMENTS
Also values x of Pythagorean triples (x, x+647, y).
Corresponding values y of solutions (x, y) are in A159641.
For the generic case x^2+(x+p)^2 = y^2 with p = 2*m^2-1 a (prime) number in A066436 see A118673 or A129836.
lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (649+36*sqrt(2))/647 for n mod 3 = {1, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (1084467+707402*sqrt(2))/647^2 for n mod 3 = 0.
FORMULA
a(n) = 6*a(n-3)-a(n-6)+1294 for n > 6; a(1)=0, a(2)=37, a(3)=1768, a(4)=1941, a(5)=2128, a(6)=11937.
G.f.: x*(37+1731*x+173*x^2-35*x^3-577*x^4-35*x^5) / ((1-x)*(1-6*x^3+x^6)).
a(3*k+1) = 647*A001652(k) for k >= 0.
PROG
(PARI) {forstep(n=0, 10000000, [1, 3], if(issquare(2*n^2+1294*n+418609), print1(n, ", ")))}
CROSSREFS
Cf. A159641, A066436, A118673, A118674, A129836, A001652, A156035 (decimal expansion of 3+2*sqrt(2)), A159642 (decimal expansion of (649+36*sqrt(2))/647), A159643 (decimal expansion of (1084467+707402*sqrt(2))/647^2).
Sequence in context: A201956 A322097 A260667 * A370149 A088872 A371489
KEYWORD
nonn,easy
AUTHOR
Mohamed Bouhamida, Jun 15 2007
EXTENSIONS
Edited and two terms added by Klaus Brockhaus, Apr 21 2009
STATUS
approved