login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A130014
Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+881)^2 = y^2.
5
0, 43, 2440, 2643, 2860, 16443, 17620, 18879, 97980, 104839, 112176, 573199, 613176, 655939, 3342976, 3575979, 3825220, 19486419, 20844460, 22297143, 113577300, 121492543, 129959400, 661979143, 708112560, 757461019, 3858299320
OFFSET
1,2
COMMENTS
Also values x of Pythagorean triples (x, x+881, y).
Corresponding values y of solutions (x, y) are in A159690.
For the generic case x^2+(x+p)^2 = y^2 with p = 2*m^2-1 a (prime) number in A066436 see A118673 or A129836.
lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (883+42*sqrt(2))/881 for n mod 3 = {1, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (2052963+1343918*sqrt(2))/881^2 for n mod 3 = 0.
FORMULA
a(n) = 6*a(n-3)-a(n-6)+1762 for n > 6; a(1)=0, a(2)=43, a(3)=2440, a(4)=2643, a(5)=2860, a(6)=16443.
G.f.: x*(43+2397*x+203*x^2-41*x^3-799*x^4-41*x^5) / ((1-x)*(1-6*x^3+x^6)).
a(3*k+1) = 881*A001652(k) for k >= 0.
MATHEMATICA
LinearRecurrence[{1, 0, 6, -6, 0, -1, 1}, {0, 43, 2440, 2643, 2860, 16443, 17620}, 30] (* Harvey P. Dale, Aug 13 2015 *)
PROG
(PARI) {forstep(n=0, 10000000, [1, 3], if(issquare(2*n^2+1762*n+776161), print1(n, ", ")))}
CROSSREFS
Cf. A159690, A066436, A118673, A118674, A129836, A001652, A156035 (decimal expansion of 3+2*sqrt(2)), A159691 (decimal expansion of (883+42*sqrt(2))/881), A159692 (decimal expansion of (2052963+1343918*sqrt(2))/881^2).
Sequence in context: A335207 A076572 A015258 * A246535 A265234 A357557
KEYWORD
nonn,easy
AUTHOR
Mohamed Bouhamida, Jun 15 2007
EXTENSIONS
Edited and two terms added by Klaus Brockhaus, Apr 21 2009
STATUS
approved