OFFSET
1,2
COMMENTS
Also values x of Pythagorean triples (x, x+881, y).
Corresponding values y of solutions (x, y) are in A159690.
For the generic case x^2+(x+p)^2 = y^2 with p = 2*m^2-1 a (prime) number in A066436 see A118673 or A129836.
lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (883+42*sqrt(2))/881 for n mod 3 = {1, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (2052963+1343918*sqrt(2))/881^2 for n mod 3 = 0.
LINKS
Index entries for linear recurrences with constant coefficients, signature (1,0,6,-6,0,-1,1).
FORMULA
a(n) = 6*a(n-3)-a(n-6)+1762 for n > 6; a(1)=0, a(2)=43, a(3)=2440, a(4)=2643, a(5)=2860, a(6)=16443.
G.f.: x*(43+2397*x+203*x^2-41*x^3-799*x^4-41*x^5) / ((1-x)*(1-6*x^3+x^6)).
a(3*k+1) = 881*A001652(k) for k >= 0.
MATHEMATICA
LinearRecurrence[{1, 0, 6, -6, 0, -1, 1}, {0, 43, 2440, 2643, 2860, 16443, 17620}, 30] (* Harvey P. Dale, Aug 13 2015 *)
PROG
(PARI) {forstep(n=0, 10000000, [1, 3], if(issquare(2*n^2+1762*n+776161), print1(n, ", ")))}
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Mohamed Bouhamida, Jun 15 2007
EXTENSIONS
Edited and two terms added by Klaus Brockhaus, Apr 21 2009
STATUS
approved