login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A159640
a(1) = a(2) = 1; for n > 2, a(n) = (a(1), a(2), a(3), ...) dot (P(1), P(2), P(3), ...); P = A000129.
1
1, 1, 3, 18, 234, 7020, 498420, 84731400, 34655142600, 34169970603600, 81290360065964400, 466769247498767584800, 6469888539580417492912800, 216495410311439930147848113600, 17489148731189051877133614160948800, 3410838720448876031389860235353200668800
OFFSET
1,3
COMMENTS
The sequence starting (1, 3, 18, ...) = the eigensequence of an infinite lower triangular matrix with n terms of the Pell series in each row: (1, 2, 5, ...).
FORMULA
a(1) = 1, a(2) = 1, then a(n) = Sum_{j=1..n-1} a(j)*A000129(j), for n >2.
EXAMPLE
a(5) = 234 = (1, 1, 3, 18) dot (1, 2, 5, 12) = (1 + 2 + 15 + 216).
MAPLE
A159640 := proc(n)
option remember;
if n <= 2 then
1;
else
add(procname(j)*A000129(j), j=1..n-1) ;
end if;
end proc: # R. J. Mathar, Aug 12 2012
PROG
(PARI) P(n) = ([2, 1; 1, 0]^n)[2, 1]; \\ A000129
a(n) = if (n>2, sum(j=1, n-1, a(j)*P(j)), 1); \\ Michel Marcus, Feb 09 2022
CROSSREFS
Cf. A000129.
Sequence in context: A195763 A265460 A137223 * A038061 A232916 A327231
KEYWORD
nonn
AUTHOR
Gary W. Adamson, Apr 18 2009
STATUS
approved