login
A159640
a(1) = a(2) = 1; for n > 2, a(n) = (a(1), a(2), a(3), ...) dot (P(1), P(2), P(3), ...); P = A000129.
1
1, 1, 3, 18, 234, 7020, 498420, 84731400, 34655142600, 34169970603600, 81290360065964400, 466769247498767584800, 6469888539580417492912800, 216495410311439930147848113600, 17489148731189051877133614160948800, 3410838720448876031389860235353200668800
OFFSET
1,3
COMMENTS
The sequence starting (1, 3, 18, ...) = the eigensequence of an infinite lower triangular matrix with n terms of the Pell series in each row: (1, 2, 5, ...).
FORMULA
a(1) = 1, a(2) = 1, then a(n) = Sum_{j=1..n-1} a(j)*A000129(j), for n >2.
EXAMPLE
a(5) = 234 = (1, 1, 3, 18) dot (1, 2, 5, 12) = (1 + 2 + 15 + 216).
MAPLE
A159640 := proc(n)
option remember;
if n <= 2 then
1;
else
add(procname(j)*A000129(j), j=1..n-1) ;
end if;
end proc: # R. J. Mathar, Aug 12 2012
PROG
(PARI) P(n) = ([2, 1; 1, 0]^n)[2, 1]; \\ A000129
a(n) = if (n>2, sum(j=1, n-1, a(j)*P(j)), 1); \\ Michel Marcus, Feb 09 2022
CROSSREFS
Cf. A000129.
Sequence in context: A195763 A265460 A137223 * A038061 A232916 A327231
KEYWORD
nonn
AUTHOR
Gary W. Adamson, Apr 18 2009
STATUS
approved