Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Feb 10 2022 20:31:17
%S 1,1,3,18,234,7020,498420,84731400,34655142600,34169970603600,
%T 81290360065964400,466769247498767584800,6469888539580417492912800,
%U 216495410311439930147848113600,17489148731189051877133614160948800,3410838720448876031389860235353200668800
%N a(1) = a(2) = 1; for n > 2, a(n) = (a(1), a(2), a(3), ...) dot (P(1), P(2), P(3), ...); P = A000129.
%C The sequence starting (1, 3, 18, ...) = the eigensequence of an infinite lower triangular matrix with n terms of the Pell series in each row: (1, 2, 5, ...).
%F a(1) = 1, a(2) = 1, then a(n) = Sum_{j=1..n-1} a(j)*A000129(j), for n >2.
%e a(5) = 234 = (1, 1, 3, 18) dot (1, 2, 5, 12) = (1 + 2 + 15 + 216).
%p A159640 := proc(n)
%p option remember;
%p if n <= 2 then
%p 1;
%p else
%p add(procname(j)*A000129(j),j=1..n-1) ;
%p end if;
%p end proc: # _R. J. Mathar_, Aug 12 2012
%o (PARI) P(n) = ([2, 1; 1, 0]^n)[2, 1]; \\ A000129
%o a(n) = if (n>2, sum(j=1, n-1, a(j)*P(j)), 1); \\ _Michel Marcus_, Feb 09 2022
%Y Cf. A000129.
%K nonn
%O 1,3
%A _Gary W. Adamson_, Apr 18 2009