login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A159620
Numerator of Hermite(n, 3/19).
1
1, 6, -686, -12780, 1409196, 45363816, -4815014664, -225406138896, 22982647278480, 1439841741934176, -140702191563957984, -11239870526148498624, 1050017582244063317184, 103682343732014971981440, -9233370964550688463200384, -1103421356230511467567597824
OFFSET
0,2
LINKS
FORMULA
From G. C. Greubel, Jul 14 2018: (Start)
a(n) = 19^n * Hermite(n, 3/19).
E.g.f.: exp(6*x - 361*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(6/19)^(n-2*k)/(k!*(n-2*k)!)). (End)
MATHEMATICA
Numerator[Table[HermiteH[n, 3/19], {n, 0, 30}]] (* Vladimir Joseph Stephan Orlovsky, May 20 2011 *)
Table[19^n*HermiteH[n, 3/19], {n, 0, 30}] (* G. C. Greubel, Jul 14 2018 *)
PROG
(PARI) a(n)=numerator(polhermite(n, 3/19)) \\ Charles R Greathouse IV, Jan 29 2016
(PARI) my(x='x+O('x^30)); Vec(serlaplace(exp(6*x - 361*x^2))) \\ G. C. Greubel, Jul 14 2018
(Magma) [Numerator((&+[(-1)^k*Factorial(n)*(3/19)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jul 14 2018
CROSSREFS
Sequence in context: A331724 A046985 A159371 * A125535 A364688 A116298
KEYWORD
sign,frac,easy
AUTHOR
N. J. A. Sloane, Nov 12 2009
STATUS
approved