login
A046985
Multiply perfect numbers whose average divisor is an integer and divides the number itself.
10
1, 6, 672, 30240, 32760, 23569920, 45532800, 14182439040, 51001180160, 153003540480, 403031236608, 13661860101120, 154345556085770649600, 9186050031556349952000, 143573364313605309726720, 352338107624535891640320, 680489641226538823680000, 34384125938411324962897920
OFFSET
1,2
LINKS
FORMULA
Let s1 = sigma(k) = A000203(k) be the sum of divisors of k and s0 = d(k) = A000005(k) be the number of divisors of k. Then, k is a term if s1/k, (k * s0)/s1, and s1/s0 are all integers.
EXAMPLE
k = 45532800 is a term since, s0 = 384, s1 = 182131200, and the three quotients s1/k = 182131200/45532800 = 4, (k * s0)/s1 = (45532800 * 384)/182131200 = 96, and s1/s0 = 182131200/384 = 474300 are all integers.
MATHEMATICA
q[n_] := Module[{d = DivisorSigma[0, n], s = DivisorSigma[1, n]}, Divisible[s, n] && Divisible[n * d, s] && Divisible[s, d]]; Select[Range[33000], q] (* Amiram Eldar, May 09 2024 *)
PROG
(PARI) isok(n) = s1 = sigma(n); s0 = numdiv(n); !(s1 % n) && !(s1 % s0) && !((n*s0) % s1); \\ Michel Marcus, Dec 10 2013
(PARI) is(k) = {my(f = factor(k), s = sigma(f), d = numdiv(f)); !(s % k) && !((k * d) % s) && !(s % d); } \\ Amiram Eldar, May 09 2024
CROSSREFS
Intersection of A003601, A007691 and A001599.
Sequence in context: A269842 A333639 A331724 * A159371 A159620 A125535
KEYWORD
nonn
AUTHOR
EXTENSIONS
a(10)-a(15) from Donovan Johnson, Nov 30 2008
Edited and a(16)-a(18) added by Amiram Eldar, May 09 2024
STATUS
approved