login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A364688
Number of 8-cycles in the hypercube graph Q_n.
1
0, 0, 0, 6, 696, 6720, 39840, 184800, 736512, 2644992, 8801280, 27624960, 82790400, 238977024, 668688384, 1822679040, 4858183680, 12700876800, 32647938048, 82682707968, 206650736640, 510425825280, 1247438438400, 3019527684096, 7245593051136, 17248655769600
OFFSET
0,4
LINKS
Eric Weisstein's World of Mathematics, Graph Cycle
Eric Weisstein's World of Mathematics, Hypercube Graph
FORMULA
a(n) = 2^(n - 4)*n*(n - 1)*(n - 2)*(27*n - 79).
a(n) = 10*a(n-1) - 40*a(n-2) + 80*a(n-3) - 80*a(n-4) + 32*a(n-5).
G.f.: -6*x^3*(1 + 106*x)/(-1 + 2*x)^5.
MATHEMATICA
Table[Length[FindCycle[HypercubeGraph[n], {8}, All]], {n, 0, 9}]
Table[2^(n - 4) n (n - 1) (n - 2) (27 n - 79), {n, 0, 20}]
Table[3 2^(n - 3) Binomial[n, 3] (27 n - 79), {n, 0, 20}]
LinearRecurrence[{10, -40, 80, -80, 32}, {0, 0, 0, 6, 696}, 20]
CoefficientList[Series[6 x^3 (1 + 106 x)/(1 - 2 x)^5, {x, 0, 20}], x]
CROSSREFS
Cf. A001788 (4-cycles).
Cf. A290031 (6-cycles).
Sequence in context: A159371 A159620 A125535 * A116298 A343140 A112637
KEYWORD
nonn
AUTHOR
Eric W. Weisstein, Aug 02 2023
STATUS
approved