login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A159460
Numerator of Hermite(n, 9/11).
1
1, 18, 82, -7236, -189780, 3588408, 294225144, 85684176, -496875078768, -9109635982560, 918220473870624, 38573287607466432, -1749983724509205312, -143516534253248214144, 2922151180747492056960, 538832739303459806545152, -908419478651119648952064
OFFSET
0,2
LINKS
DLMF Digital library of mathematical functions, Table 18.9.1 for H_n(x)
FORMULA
D-finite with recurrence a(n) - 18*a(n-1) + 242*(n-1)*a(n-2) = 0. [DLMF] - R. J. Mathar, Feb 16 2014
From G. C. Greubel, Jun 15 2018: (Start)
a(n) = 11^n * Hermite(n,9/11).
E.g.f.: exp(18*x-121*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(18/11)^(n-2*k)/(k!*(n-2*k)!)). (End)
EXAMPLE
Numerator of 1, 18/11, 82/121, -7236/1331, -189780/14641, 3588408/161051, ...
MAPLE
A159460 := proc(n)
orthopoly[H](n, 9/11) ;
numer(%) ;
end proc: # R. J. Mathar, Feb 16 2014
MATHEMATICA
Numerator[Table[HermiteH[n, 9/11], {n, 0, 50}]] (* Vladimir Joseph Stephan Orlovsky, Apr 13 2011 *)
PROG
(PARI) a(n)=numerator(polhermite(n, 9/11)) \\ Charles R Greathouse IV, Jan 29 2016
(Magma) [Numerator((&+[(-1)^k*Factorial(n)*(18/11)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jun 15 2018
CROSSREFS
Cf. A001020 (denominators).
Sequence in context: A043430 A044205 A044586 * A043181 A039358 A043961
KEYWORD
sign,frac
AUTHOR
N. J. A. Sloane, Nov 12 2009
STATUS
approved