login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numerator of Hermite(n, 9/11).
1

%I #22 Sep 08 2022 08:45:43

%S 1,18,82,-7236,-189780,3588408,294225144,85684176,-496875078768,

%T -9109635982560,918220473870624,38573287607466432,

%U -1749983724509205312,-143516534253248214144,2922151180747492056960,538832739303459806545152,-908419478651119648952064

%N Numerator of Hermite(n, 9/11).

%H Vincenzo Librandi, <a href="/A159460/b159460.txt">Table of n, a(n) for n = 0..200</a>

%H DLMF <a href="https://dlmf.nist.gov/18.9">Digital library of mathematical functions</a>, Table 18.9.1 for H_n(x)

%F D-finite with recurrence a(n) - 18*a(n-1) + 242*(n-1)*a(n-2) = 0. [DLMF] - _R. J. Mathar_, Feb 16 2014

%F From _G. C. Greubel_, Jun 15 2018: (Start)

%F a(n) = 11^n * Hermite(n,9/11).

%F E.g.f.: exp(18*x-121*x^2).

%F a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(18/11)^(n-2*k)/(k!*(n-2*k)!)). (End)

%e Numerator of 1, 18/11, 82/121, -7236/1331, -189780/14641, 3588408/161051, ...

%p A159460 := proc(n)

%p orthopoly[H](n,9/11) ;

%p numer(%) ;

%p end proc: # _R. J. Mathar_, Feb 16 2014

%t Numerator[Table[HermiteH[n,9/11],{n,0,50}]] (* _Vladimir Joseph Stephan Orlovsky_, Apr 13 2011 *)

%o (PARI) a(n)=numerator(polhermite(n,9/11)) \\ _Charles R Greathouse IV_, Jan 29 2016

%o (Magma) [Numerator((&+[(-1)^k*Factorial(n)*(18/11)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // _G. C. Greubel_, Jun 15 2018

%Y Cf. A001020 (denominators).

%K sign,frac

%O 0,2

%A _N. J. A. Sloane_, Nov 12 2009