|
|
A159359
|
|
Number of n X n arrays of squares of integers summing to 5.
|
|
3
|
|
|
12, 198, 4608, 53730, 378252, 1909236, 7628544, 25628076, 75297420, 198807114, 481029120, 1082267550, 2289691404, 4595197320, 8809614336, 16225724664, 28845544716, 49690719342, 83218759680, 135872231418, 216792905868, 338738351292, 519244496640, 782084374500
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
2,1
|
|
COMMENTS
|
As pointed out by Robert Israel in A159355, such arrangments of squares in an n X n array are related to the partitions of the sum (5 in this case). These partitions can be turned into a sum of products of binomial coefficients that computes the desired count, therefore all these sequences have holonomic recurrences. - Georg Fischer, Feb 17 2022
|
|
LINKS
|
R. H. Hardin, Table of n, a(n) for n = 2..100
|
|
FORMULA
|
Empirical: n^2*(n^2-1)*(n^2+2)*(n^4-11*n^2+48)/120. - R. J. Mathar, Aug 11 2009
|
|
MAPLE
|
C:=binomial; seq(n^2*(n^2-1)+C(n^2, 5), n=2..22); # Georg Fischer, Feb 17 2022
|
|
CROSSREFS
|
Cf. A159355-A159446.
Sequence in context: A048667 A115865 A291285 * A119864 A036240 A346509
Adjacent sequences: A159356 A159357 A159358 * A159360 A159361 A159362
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
R. H. Hardin, Apr 11 2009
|
|
STATUS
|
approved
|
|
|
|