login
A291285
Expansion of G(x)^4 where G(x) = g.f. for A291096.
2
1, 12, 198, 3780, 78489, 1721412, 39234780, 920140884, 22059787860, 538209747504, 13319611953102, 333555996632508, 8436806028184590, 215223666947011800, 5530993034609017080, 143057705860198877940, 3721183384198820225004, 97282669559237767849104
OFFSET
0,2
LINKS
Valentin Bonzom, Luca Lionni, Counting Gluings of Octahedra, Electronic Journal of Combinatorics 24(3) (2017), #P3.36. See Eq. (47).
FORMULA
a(n) ~ 2^(8*n+17/2) / (sqrt(Pi) * n^(3/2) * 3^(2*n+9/2)). - Vaclav Kotesovec, Aug 26 2017
MAPLE
a:= proc(n) option remember; `if`(n=0, 1, a(n-1)*8*
(4*n+1)*(2*n+1)*(4*n+3)/((3*n+2)*(3*n+4)*(n+1)))
end:
seq(a(n), n=0..20); # Alois P. Heinz, Aug 26 2017
CROSSREFS
Cf. A291096.
Sequence in context: A321033 A048667 A115865 * A159359 A119864 A036240
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Aug 26 2017
EXTENSIONS
More terms from Alois P. Heinz, Aug 26 2017
STATUS
approved