|
|
A291285
|
|
Expansion of G(x)^4 where G(x) = g.f. for A291096.
|
|
2
|
|
|
1, 12, 198, 3780, 78489, 1721412, 39234780, 920140884, 22059787860, 538209747504, 13319611953102, 333555996632508, 8436806028184590, 215223666947011800, 5530993034609017080, 143057705860198877940, 3721183384198820225004, 97282669559237767849104
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
|
|
FORMULA
|
a(n) ~ 2^(8*n+17/2) / (sqrt(Pi) * n^(3/2) * 3^(2*n+9/2)). - Vaclav Kotesovec, Aug 26 2017
|
|
MAPLE
|
a:= proc(n) option remember; `if`(n=0, 1, a(n-1)*8*
(4*n+1)*(2*n+1)*(4*n+3)/((3*n+2)*(3*n+4)*(n+1)))
end:
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|