|
|
A159355
|
|
Number of n X n arrays of squares of integers summing to 4.
|
|
3
|
|
|
5, 135, 1836, 12675, 58941, 211925, 635440, 1663821, 3921325, 8495531, 17179020, 32795295, 59626581, 103962825, 174792896, 284660665, 450710325, 695946991, 1050740300, 1554600411, 2258257485, 3226077405, 4538848176, 6296973125, 8624108701, 11671286355
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
2,1
|
|
COMMENTS
|
Each array either has four 1's or one 4, and all other elements 0. - Robert Israel, Jun 19 2018
|
|
LINKS
|
|
|
FORMULA
|
Empirical: n^2*(n^2+1)*(n^4-7*n^2+18)/24. - R. J. Mathar, Aug 11 2009
Empirical formula confirmed.
a(n) = binomial(n^2,4)+n^2 = A014626(n^2).
(End)
G.f.: x^2*(5 + 90*x + 801*x^2 + 591*x^3 + 252*x^4 - 88*x^5 + 37*x^6 - 9*x^7 + x^8) / (1 - x)^9.
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9) for n>10.
(End)
|
|
MAPLE
|
seq(binomial(n^2, 4)+n^2, n=2..100);
|
|
PROG
|
(PARI) Vec(x^2*(5 + 90*x + 801*x^2 + 591*x^3 + 252*x^4 - 88*x^5 + 37*x^6 - 9*x^7 + x^8) / (1 - x)^9 + O(x^40)) \\ Colin Barker, Jun 19 2018
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|