login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A158842
a(n) = 1 + n*(n+1)*(n-1)/2.
8
1, 1, 4, 13, 31, 61, 106, 169, 253, 361, 496, 661, 859, 1093, 1366, 1681, 2041, 2449, 2908, 3421, 3991, 4621, 5314, 6073, 6901, 7801, 8776, 9829, 10963, 12181, 13486, 14881, 16369, 17953, 19636, 21421, 23311, 25309, 27418, 29641, 31981, 34441, 37024, 39733, 42571, 45541, 48646
OFFSET
0,3
COMMENTS
Binomial transform of the sequence 1, 0, 3, 3, 0, 0, 0, ... .
FORMULA
a(n) = 1+A027480(n-1) for n>=1. - R. J. Mathar, Mar 28 2009
G.f.: 1-x*(-1-3*x^2+x^3) / (x-1)^4 . - R. J. Mathar, Nov 05 2011
E.g.f.: exp(x)*(1 + x^3/2 + 3*x^2/2). - Nikolaos Pantelidis, Feb 13 2023
EXAMPLE
a(4) = 31 = sum of row 4 terms of triangle A158841: (13 + 9 + 6 + 3).
MAPLE
A158842 := proc(n)
1+n*(n+1)*(n-1)/2 ;
end proc:
seq(A158842(n), n=0..30) ; # R. J. Mathar, Nov 05 2011
MATHEMATICA
Table[1 + n*(n + 1)*(n - 1)/2, {n, 40}] (* and *) LinearRecurrence[{4, -6, 4, -1}, {1, 4, 13, 31}, 40] (* Vladimir Joseph Stephan Orlovsky, Feb 21 2012 *)
PROG
(Magma) [1+ n*(n+1)*(n-1)/2: n in [1..50]]; // Vincenzo Librandi, Nov 16 2011
CROSSREFS
Row sums of A158841.
Sequence in context: A335981 A191189 A106302 * A100136 A097120 A098536
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
a(0)=1 prepended by Andrew Howroyd, Feb 14 2023
STATUS
approved