login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 1 + n*(n+1)*(n-1)/2.
8

%I #37 Feb 14 2023 19:56:07

%S 1,1,4,13,31,61,106,169,253,361,496,661,859,1093,1366,1681,2041,2449,

%T 2908,3421,3991,4621,5314,6073,6901,7801,8776,9829,10963,12181,13486,

%U 14881,16369,17953,19636,21421,23311,25309,27418,29641,31981,34441,37024,39733,42571,45541,48646

%N a(n) = 1 + n*(n+1)*(n-1)/2.

%C Binomial transform of the sequence 1, 0, 3, 3, 0, 0, 0, ... .

%H Vincenzo Librandi, <a href="/A158842/b158842.txt">Table of n, a(n) for n = 0..10000</a>

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1).

%F a(n) = 1+A027480(n-1) for n>=1. - _R. J. Mathar_, Mar 28 2009

%F G.f.: 1-x*(-1-3*x^2+x^3) / (x-1)^4 . - _R. J. Mathar_, Nov 05 2011

%F E.g.f.: exp(x)*(1 + x^3/2 + 3*x^2/2). - _Nikolaos Pantelidis_, Feb 13 2023

%e a(4) = 31 = sum of row 4 terms of triangle A158841: (13 + 9 + 6 + 3).

%p A158842 := proc(n)

%p 1+n*(n+1)*(n-1)/2 ;

%p end proc:

%p seq(A158842(n),n=0..30) ; # _R. J. Mathar_, Nov 05 2011

%t Table[1 + n*(n + 1)*(n - 1)/2, {n, 40}] (* and *) LinearRecurrence[{4, -6, 4, -1}, {1, 4, 13, 31}, 40] (* _Vladimir Joseph Stephan Orlovsky_, Feb 21 2012 *)

%o (Magma) [1+ n*(n+1)*(n-1)/2: n in [1..50]]; // _Vincenzo Librandi_, Nov 16 2011

%Y Row sums of A158841.

%K nonn,easy

%O 0,3

%A _Gary W. Adamson_ & _Roger L. Bagula_, Mar 28 2009

%E a(0)=1 prepended by _Andrew Howroyd_, Feb 14 2023