login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A158535
a(n) = Hermite(n,11).
1
1, 22, 482, 10516, 228460, 4941992, 106439224, 2282359024, 48721749392, 1035360742240, 21900944840224, 461113571640128, 9662677789597888, 201512185651790464, 4182038461809845120, 86362504961566459648, 1774513955300166758656, 36275706857833541981696
OFFSET
0,2
COMMENTS
a(70) is the first negative term. - Georg Fischer, Feb 15 2019
LINKS
FORMULA
From G. C. Greubel, Jul 13 2018: (Start)
E.g.f.: exp(22*x - x^2).
a(n) = 22*a(n-1) - 2*(n-1)*a(n-2). (End)
MATHEMATICA
HermiteH[Range[0, 20], 11] (* Harvey P. Dale, Jun 30 2011 *)
With[{nmax = 50}, CoefficientList[Series[Exp[22*x - x^2], {x, 0, nmax}], x]*Range[0, nmax]!] (* G. C. Greubel, Jul 13 2018 *)
PROG
(Magma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(22*x - x^2))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Jul 13 2018
(PARI) x='x+O('x^30); Vec(serlaplace(exp(22*x - x^2))) \\ G. C. Greubel, Jul 13 2018
(PARI) for(n=0, 30, print1(polhermite(n, 11), ", ")) \\ G. C. Greubel, Jul 13 2018
CROSSREFS
Sequence in context: A139228 A240782 A261135 * A171327 A077421 A207491
KEYWORD
sign
AUTHOR
N. J. A. Sloane, Nov 11 2009
STATUS
approved