login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A158537
a(n) = 22*n^2 + 1.
2
1, 23, 89, 199, 353, 551, 793, 1079, 1409, 1783, 2201, 2663, 3169, 3719, 4313, 4951, 5633, 6359, 7129, 7943, 8801, 9703, 10649, 11639, 12673, 13751, 14873, 16039, 17249, 18503, 19801, 21143, 22529, 23959, 25433, 26951, 28513, 30119, 31769, 33463, 35201, 36983
OFFSET
0,2
COMMENTS
From the identity (22*n^2 + 1)^2 - (121*n^2 + 11)*(2*n)^2 = 1 we derive a(n)^2 - A158536(n) * A005843(n)^2 = 1.
FORMULA
G.f.: (1 + 20*x + 23*x^2)/(1-x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
From Amiram Eldar, Mar 06 2023: (Start)
Sum_{n>=0} 1/a(n) = (coth(Pi/sqrt(22))*Pi/sqrt(22) + 1)/2.
Sum_{n>=0} (-1)^n/a(n) = (cosech(Pi/sqrt(22))*Pi/sqrt(22) + 1)/2. (End)
MATHEMATICA
LinearRecurrence[{3, -3, 1}, {1, 23, 89}, 50] (* Vincenzo Librandi, Feb 12 2012 *)
22*Range[0, 40]^2+1 (* Harvey P. Dale, May 04 2019 *)
PROG
(Magma) I:=[1, 23, 89]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 10 2012
(PARI) for(n=1, 40, print1(22*n^2 + 1", ")); \\ Vincenzo Librandi, Feb 10 2012
CROSSREFS
Sequence in context: A050255 A014088 A244453 * A117049 A142062 A050529
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Mar 21 2009
EXTENSIONS
Comment rewritten, a(0) added by R. J. Mathar, Oct 16 2009
STATUS
approved