login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A158536
a(n) = 121*n^2 + 11.
2
11, 132, 495, 1100, 1947, 3036, 4367, 5940, 7755, 9812, 12111, 14652, 17435, 20460, 23727, 27236, 30987, 34980, 39215, 43692, 48411, 53372, 58575, 64020, 69707, 75636, 81807, 88220, 94875, 101772, 108911, 116292, 123915, 131780, 139887, 148236, 156827, 165660
OFFSET
0,1
COMMENTS
The identity (22*n^2+1)^2-(121*n^2+11) * (2*n)^2 = 1 can be written as A158537(n)^2 -a(n) * A005843(n)^2 = 1.
FORMULA
From R. J. Mathar, Oct 16 2009: (Start)
a(n)= 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: 11*(1+9*x+12*x^2)/(1-x)^3. (End)
From Amiram Eldar, Mar 06 2023: (Start)
Sum_{n>=0} 1/a(n) = (coth(Pi/sqrt(11))*Pi/sqrt(11) + 1)/22.
Sum_{n>=0} (-1)^n/a(n) = (cosech(Pi/sqrt(11))*Pi/sqrt(11) + 1)/22. (End)
MATHEMATICA
121Range[0, 40]^2+11 (* Harvey P. Dale, Mar 04 2011 *)
LinearRecurrence[{3, -3, 1}, {11, 132, 495}, 50] (* Vincenzo Librandi, Feb 12 2012 *)
PROG
(Magma) I:=[11, 132, 495]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 12 2012
(PARI) for(n=1, 40, print1(121*n^2+11", ")); \\ Vincenzo Librandi, Feb 12 2012
CROSSREFS
Sequence in context: A068645 A097258 A044041 * A229252 A242163 A105280
KEYWORD
nonn,less,easy
AUTHOR
Vincenzo Librandi, Mar 21 2009
EXTENSIONS
a(0) added by R. J. Mathar, Oct 16 2009
STATUS
approved