OFFSET
1,1
COMMENTS
The identity (576*n-1)^2-(576*n^2-2*n)*(24)^2=1 can be written as A158372(n)^2-a(n)*(24)^2=1.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..10000
Vincenzo Librandi, X^2-AY^2=1
E. J. Barbeau, Polynomial Excursions, Chapter 10: Diophantine equations (2010), pages 84-85 (row 15 in the first table at p. 85, case d(t) = t*(24^2*t-2)).
Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
FORMULA
Contribution from Harvey P. Dale, Nov 06 2011: (Start)
G.f.: -2*x*(289*x+287)/(x-1)^3.
a(1)=574, a(2)=2300, a(3)=5178, a(n) = 3*a(n-1)-3*a(n-2)+a(n-3). (End)
MATHEMATICA
Table[576n^2-2n, {n, 40}] (* or *) LinearRecurrence[{3, -3, 1}, {574, 2300, 5178}, 40] (* Harvey P. Dale, Nov 06 2011 *)
PROG
(Magma) I:=[574, 2300, 5178]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..50]];
(PARI) a(n) = 576*n^2 - 2*n.
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Mar 17 2009
STATUS
approved