login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A158374
625n - 1.
2
624, 1249, 1874, 2499, 3124, 3749, 4374, 4999, 5624, 6249, 6874, 7499, 8124, 8749, 9374, 9999, 10624, 11249, 11874, 12499, 13124, 13749, 14374, 14999, 15624, 16249, 16874, 17499, 18124, 18749, 19374, 19999, 20624, 21249, 21874, 22499, 23124
OFFSET
1,1
COMMENTS
The identity (625*n-1)^2-(625*n^2-2*n)*(25)^2=1 can be written as a(n)^2-A158373(n)*(25)^2=1.
LINKS
Vincenzo Librandi, X^2-AY^2=1
E. J. Barbeau, Polynomial Excursions, Chapter 10: Diophantine equations (2010), pages 84-85 (row 15 in the first table at p. 85, case d(t) = t*(25^2*t-2)).
FORMULA
a(n) = 2*a(n-1)-a(n-2).
G.f.: x*(624+x)/(1-x)^2.
MATHEMATICA
LinearRecurrence[{2, -1}, {624, 1249}, 50]
625*Range[50]-1 (* Harvey P. Dale, May 26 2018 *)
PROG
(Magma) I:=[624, 1249]; [n le 2 select I[n] else 2*Self(n-1)-Self(n-2): n in [1..50]];
(PARI) a(n) = 625*n - 1.
CROSSREFS
Cf. A158373.
Sequence in context: A180453 A216843 A043368 * A349031 A006912 A318939
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Mar 17 2009
STATUS
approved