login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A092291 Let p = n-th irregular prime, A000928(n). Then a(n) = smallest value of m such that numerator(Bernoulli(2*m)/(2*m)) / numerator(Bernoulli(2*m)/(2*m*(2*m-1))) equals p. 3
574, 1269, 1910, 3384, 1185, 1376, 9611, 4789, 9670, 20946, 13019, 11247, 2689, 22708, 13355, 45251, 48407, 32653, 18761, 38706, 76391, 25563, 50310, 79023, 44948, 29864, 21716, 71441, 104339, 22993, 73572, 61549, 14714, 26122, 6227, 179369, 159687, 5862, 132157, 24925, 76023, 15346, 73479, 136956, 212240, 10587, 3801, 137040, 108520, 194171, 98550, 282532, 87272, 133081, 220187, 305002, 41764, 27268, 380180, 70921, 184940, 241076, 73858, 80108, 250927 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

It was conjectured that a(n) = (1 + A000928(n) * (A035112(n) - 1))/2. However, Bernd Kellner's insightful paper shows that this formula first fails for the irregular prime 6449. - T. D. Noe, Feb 10 2004

LINKS

Table of n, a(n) for n=1..65.

Bernd Kellner, A conjecture about numerators of Bernoulli numbers

MATHEMATICA

(* This program is not convenient for a large number of terms *) irregularPrimeQ[p_] := Module[{k = 1}, While[2*k <= p-3 && Mod[ Numerator[ BernoulliB[2*k]], p] != 0, k++]; 2*k <= p-3]; irregularPrime[1] = 37; irregularPrime[n_] := irregularPrime[n] = Module[{p}, For[p = NextPrime[ irregularPrime[n-1]], True, p = NextPrime[p], If[ irregularPrimeQ[p], Return[p]]]]; a[n_] := a[n] = For[m = 1, True, m++, If[ Numerator[BernoulliB[2*m]/(2*m)] / Numerator[ BernoulliB[2*m]/(2*m*(2*m-1))] == irregularPrime[n], Return[m]]]; Table[ Print[a[n]]; a[n], {n, 1, 15}] (* Jean-François Alcover, Sep 27 2013 *)

CROSSREFS

Term in A090495 corresponding to first occurrence of p in A090496.

Sequence in context: A231244 A252115 A090495 * A158371 A066154 A321052

Adjacent sequences:  A092288 A092289 A092290 * A092292 A092293 A092294

KEYWORD

nonn,nice

AUTHOR

N. J. A. Sloane, based on a suggestion of Roland Bacher, Feb 05 2004

EXTENSIONS

Initial terms were computed by Roland Bacher, Feb 04 2004; further terms from Hans Havermann, Feb 05 2004 and T. D. Noe, Feb 06 2004

Offset modified by Jean-François Alcover, Sep 27 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 31 22:45 EDT 2020. Contains 334756 sequences. (Running on oeis4.)