login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A158308
361n - 1.
2
360, 721, 1082, 1443, 1804, 2165, 2526, 2887, 3248, 3609, 3970, 4331, 4692, 5053, 5414, 5775, 6136, 6497, 6858, 7219, 7580, 7941, 8302, 8663, 9024, 9385, 9746, 10107, 10468, 10829, 11190, 11551, 11912, 12273, 12634, 12995, 13356, 13717, 14078
OFFSET
1,1
COMMENTS
The identity (361*n-1)^2-(361*n^2-2*n)*(19)^2=1 can be written as a(n)^2-A158307(n)*(19)^2=1.
LINKS
Vincenzo Librandi, X^2-AY^2=1
E. J. Barbeau, Polynomial Excursions, Chapter 10: Diophantine equations (2010), pages 84-85 (row 15 in the first table at p. 85, case d(t) = t*(19^2*t-2)).
FORMULA
G.f.: x*(360+x)/(1-x)^2.
a(1)=360, a(2)=721, a(n)=2*a(n-1)-a(n-2). - Harvey P. Dale, Aug 18 2011
MATHEMATICA
361*Range[40]-1 (* or *) LinearRecurrence[{2, -1}, {360, 721}, 40] (* Harvey P. Dale, Aug 18 2011 *)
PROG
(Magma) I:=[360, 721]; [n le 2 select I[n] else 2*Self(n-1)-Self(n-2): n in [1..50]];
(PARI) a(n)=361*n-1
CROSSREFS
Cf. A158307.
Sequence in context: A048978 A056502 A056492 * A205738 A112536 A140801
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Mar 16 2009
EXTENSIONS
Minor corrections and edits by M. F. Hasler, Oct 14 2014
STATUS
approved