OFFSET
1,1
COMMENTS
The identity (361*n-1)^2-(361*n^2-2*n)*(19)^2=1 can be written as a(n)^2-A158307(n)*(19)^2=1.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..10000
Vincenzo Librandi, X^2-AY^2=1
E. J. Barbeau, Polynomial Excursions, Chapter 10: Diophantine equations (2010), pages 84-85 (row 15 in the first table at p. 85, case d(t) = t*(19^2*t-2)).
Index entries for linear recurrences with constant coefficients, signature (2,-1).
FORMULA
G.f.: x*(360+x)/(1-x)^2.
a(1)=360, a(2)=721, a(n)=2*a(n-1)-a(n-2). - Harvey P. Dale, Aug 18 2011
MATHEMATICA
361*Range[40]-1 (* or *) LinearRecurrence[{2, -1}, {360, 721}, 40] (* Harvey P. Dale, Aug 18 2011 *)
PROG
(Magma) I:=[360, 721]; [n le 2 select I[n] else 2*Self(n-1)-Self(n-2): n in [1..50]];
(PARI) a(n)=361*n-1
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Mar 16 2009
EXTENSIONS
Minor corrections and edits by M. F. Hasler, Oct 14 2014
STATUS
approved