|
|
|
|
322, 1292, 2910, 5176, 8090, 11652, 15862, 20720, 26226, 32380, 39182, 46632, 54730, 63476, 72870, 82912, 93602, 104940, 116926, 129560, 142842, 156772, 171350, 186576, 202450, 218972, 236142, 253960, 272426, 291540, 311302, 331712
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
The identity (324*n-1)^2-(324*n^2-2*n)*(18)^2=1 can be written as A158306(n)^2-a(n)*(18)^2=1.
|
|
LINKS
|
|
|
FORMULA
|
Contribution from Harvey P. Dale, Jul 14 2011: (Start)
G.f.: -2*x*(163*x+161)/(x-1)^3.
a(1)=322, a(2)=1292, a(3)=2910, a(n)=3*a(n-1)-3*a(n-2)+a(n-3). (End)
|
|
MATHEMATICA
|
Table[324n^2-2n, {n, 40}] (* or *) LinearRecurrence[{3, -3, 1}, {322, 1292, 2910}, 40] (* Harvey P. Dale, Jul 14 2011 *)
|
|
PROG
|
(Magma) I:=[322, 1292, 2910]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..50]];
(PARI) a(n) = 324*n^2 - 2*n.
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|