login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A158305
324n^2 - 2n.
2
322, 1292, 2910, 5176, 8090, 11652, 15862, 20720, 26226, 32380, 39182, 46632, 54730, 63476, 72870, 82912, 93602, 104940, 116926, 129560, 142842, 156772, 171350, 186576, 202450, 218972, 236142, 253960, 272426, 291540, 311302, 331712
OFFSET
1,1
COMMENTS
The identity (324*n-1)^2-(324*n^2-2*n)*(18)^2=1 can be written as A158306(n)^2-a(n)*(18)^2=1.
LINKS
Vincenzo Librandi, X^2-AY^2=1
E. J. Barbeau, Polynomial Excursions, Chapter 10: Diophantine equations (2010), pages 84-85 (row 15 in the first table at p. 85, case d(t) = t*(18^2*t-2)).
FORMULA
Contribution from Harvey P. Dale, Jul 14 2011: (Start)
G.f.: -2*x*(163*x+161)/(x-1)^3.
a(1)=322, a(2)=1292, a(3)=2910, a(n)=3*a(n-1)-3*a(n-2)+a(n-3). (End)
MATHEMATICA
Table[324n^2-2n, {n, 40}] (* or *) LinearRecurrence[{3, -3, 1}, {322, 1292, 2910}, 40] (* Harvey P. Dale, Jul 14 2011 *)
PROG
(Magma) I:=[322, 1292, 2910]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..50]];
(PARI) a(n) = 324*n^2 - 2*n.
CROSSREFS
Cf. A158306.
Sequence in context: A251231 A252274 A114358 * A237406 A234712 A234705
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Mar 16 2009
STATUS
approved