login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A158307
361n^2 - 2n.
2
359, 1440, 3243, 5768, 9015, 12984, 17675, 23088, 29223, 36080, 43659, 51960, 60983, 70728, 81195, 92384, 104295, 116928, 130283, 144360, 159159, 174680, 190923, 207888, 225575, 243984, 263115, 282968, 303543, 324840, 346859, 369600
OFFSET
1,1
COMMENTS
The identity (361*n-1)^2-(361*n^2-2*n)*(19)^2=1 can be written as A158308(n)^2-a(n)*(19)^2=1.
LINKS
Vincenzo Librandi, X^2-AY^2=1
E. J. Barbeau, Polynomial Excursions, Chapter 10: Diophantine equations (2010), pages 84-85 (row 15 in the first table at p. 85, case d(t) = t*(19^2*t-2)).
FORMULA
a(n) = 3*a(n-1)-3*a(n-2)+a(n-3).
G.f.: x*(-359-363*x)/(x-1)^3.
MATHEMATICA
LinearRecurrence[{3, -3, 1}, {359, 1440, 3243}, 50]
PROG
(Magma) I:=[359, 1440, 3243]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..50]];
(PARI) a(n) = 361*n^2 - 2*n.
CROSSREFS
Cf. A158308.
Sequence in context: A101796 A175537 A142852 * A013325 A344284 A179678
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Mar 16 2009
STATUS
approved