|
|
A114358
|
|
Let M(n) be the n X n matrix m(i,j)=min(i,j) for 1<=i,j<=n then a(n) is the trace of M(n)^(-6).
|
|
3
|
|
|
1, 322, 1186, 2110, 3034, 3958, 4882, 5806, 6730, 7654, 8578, 9502, 10426, 11350, 12274, 13198, 14122, 15046, 15970, 16894, 17818, 18742, 19666, 20590, 21514, 22438, 23362, 24286, 25210, 26134, 27058, 27982, 28906, 29830, 30754, 31678
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
More generally for any n>=floor((m+1)/2) the trace of M(n)^(-m) = binomial(2*m,m)*n-2^(2*m-1)+binomial(2*m-1,m).
|
|
LINKS
|
|
|
FORMULA
|
a(n) = 924n-1586 with n>2, a(1)=1, a(2)=322.
a(n) = 2*a(n-1)-a(n-2) for n>4. G.f.: x*(1+320*x+543*x^2+60*x^3)/(1-x)^2. [Colin Barker, Mar 18 2012]
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|