login
A158233
a(n) = A120070(n+1)*A120070(n+2) mod 9.
1
6, 4, 3, 0, 3, 6, 0, 3, 0, 0, 4, 0, 0, 4, 6, 0, 0, 6, 0, 6, 0, 0, 6, 3, 0, 3, 6, 3, 4, 0, 0, 4, 0, 0, 4, 0, 0, 6, 3, 0, 3, 6, 0, 0, 3, 0, 0, 6, 0, 6, 0, 0, 3, 3, 6, 4, 0, 0, 4, 0, 0, 4, 0, 0, 4, 3, 0, 3, 0, 0, 0, 3, 0, 6, 6, 0, 3, 6, 0, 3, 0, 0, 0, 3, 0, 6, 6, 0, 3, 0, 0, 4, 0, 0, 4, 0, 0, 4, 0, 0, 4, 0, 0, 4, 6
OFFSET
1,1
COMMENTS
Conjecture: this contains only the numbers 0,3,4,6 (verified for the first 5000 terms).
This multiply-modulo transformation is also used in the unrelated A157742, A158012, A158068, A158090.
MAPLE
A120070 := proc(m, n) if m-1 >= n then m^2-n^2; else 0; fi; end:
A120070flat := proc(n) i := 2 ; for m from 2 do for l from 1 to m-1 do if i = n then RETURN(A120070(m, l)) ; else i := i+1 ; fi; od: od: end:
A158233 := proc(n) (A120070flat(n+1)*A120070flat(n+2) ) mod 9 ; end: seq(A158233(n), n=1..180) ; # R. J. Mathar, Apr 09 2009
CROSSREFS
Sequence in context: A019849 A244685 A118421 * A093604 A011408 A350094
KEYWORD
nonn
AUTHOR
Paul Curtz, Mar 14 2009
EXTENSIONS
Edited and extended by R. J. Mathar, Apr 09 2009
STATUS
approved