login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A158196
Expansion of (1-x^2*c(x)^4)/(1-3*x*c(x)^2), c(x) the g.f. of A000108.
1
1, 3, 14, 71, 370, 1950, 10332, 54895, 292106, 1555706, 8289732, 44186710, 235575028, 1256093084, 6698073528, 35719158591, 190488112122, 1015885525794, 5417869631028, 28894620083346, 154102115782812
OFFSET
0,2
COMMENTS
Apply the inverse of the Riordan array (1/(1-x^2),x/(1+x)^2) to 3^n. Hankel transform is A001653.
FORMULA
Conjecture: +3*(n+1)*a(n) +2*(-26*n+7)*a(n-1) +16*(18*n-25)*a(n-2) +256*(-2*n+5)*a(n-3)=0. - R. J. Mathar, Feb 05 2015
Conjecture: 3*(2*n+3)*(n+1)*a(n) +2*(-28*n^2-52*n+21)*a(n-1) +32*(2*n+5)*(2*n-3)*a(n-2)=0. - R. J. Mathar, Feb 05 2015
CROSSREFS
Cf. A090317.
Sequence in context: A186765 A109792 A137177 * A191649 A009637 A098648
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Mar 13 2009
STATUS
approved