login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A109792
Expansion of e.g.f. log(1+x)/(1-x)^2.
5
1, 3, 14, 70, 444, 3108, 25584, 230256, 2342880, 25771680, 312888960, 4067556480, 57424792320, 861371884800, 13869128448000, 235775183616000, 4264876094976000, 81032645804544000, 1627055289796608000, 34168161085728768000, 754132445894209536000, 17345046255566819328000
OFFSET
1,2
LINKS
FORMULA
a(n) = n!*Sum_{k=1..n} Sum_{i=1..k} (-1)^(i+1)/i.
a(n) ~ n!*n*log(2). - Vaclav Kotesovec, Jun 27 2013
a(n) = n!*((-1)^n*(n + 1)*LerchPhi(-1, 1, n + 2) + log(2)*(n + 1) + ((-1)^(n + 1) - 1) / 2). - Peter Luschny, Jun 22 2022
MATHEMATICA
CoefficientList[Series[Log[1+x]/(1-x)^2, {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Jun 27 2013 *)
a[n_] := n! ((-1)^n (n + 1) LerchPhi[-1, 1, n + 2] + Log[2] (n + 1) + ((-1)^(n + 1) - 1) /2); Table[Simplify[a[n]], {n, 1, 22}] (* Peter Luschny, Jun 22 2022 *)
PROG
(PARI) for(n=1, 25, print1(n!*sum(k=1, n, sum(i=1, k, (-1)^(i+1)/i)), ", ")) \\ G. C. Greubel, Jan 21 2017
CROSSREFS
Sequence in context: A320421 A009020 A186765 * A137177 A158196 A191649
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Aug 14 2005
STATUS
approved