login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of e.g.f. log(1+x)/(1-x)^2.
5

%I #22 Jun 22 2022 14:49:48

%S 1,3,14,70,444,3108,25584,230256,2342880,25771680,312888960,

%T 4067556480,57424792320,861371884800,13869128448000,235775183616000,

%U 4264876094976000,81032645804544000,1627055289796608000,34168161085728768000,754132445894209536000,17345046255566819328000

%N Expansion of e.g.f. log(1+x)/(1-x)^2.

%H G. C. Greubel, <a href="/A109792/b109792.txt">Table of n, a(n) for n = 1..400</a>

%F a(n) = n!*Sum_{k=1..n} Sum_{i=1..k} (-1)^(i+1)/i.

%F a(n) ~ n!*n*log(2). - _Vaclav Kotesovec_, Jun 27 2013

%F a(n) = n!*((-1)^n*(n + 1)*LerchPhi(-1, 1, n + 2) + log(2)*(n + 1) + ((-1)^(n + 1) - 1) / 2). - _Peter Luschny_, Jun 22 2022

%t CoefficientList[Series[Log[1+x]/(1-x)^2, {x, 0, 20}], x]* Range[0, 20]! (* _Vaclav Kotesovec_, Jun 27 2013 *)

%t a[n_] := n! ((-1)^n (n + 1) LerchPhi[-1, 1, n + 2] + Log[2] (n + 1) + ((-1)^(n + 1) - 1) /2); Table[Simplify[a[n]], {n, 1, 22}] (* _Peter Luschny_, Jun 22 2022 *)

%o (PARI) for(n=1,25, print1(n!*sum(k=1,n, sum(i=1, k, (-1)^(i+1)/i)), ", ")) \\ _G. C. Greubel_, Jan 21 2017

%Y Cf. A001705, A092692.

%K easy,nonn

%O 1,2

%A _Vladeta Jovovic_, Aug 14 2005