login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A109794
a(2n) = A001906(n+1), a(2n+1) = A002878(n).
2
1, 1, 3, 4, 8, 11, 21, 29, 55, 76, 144, 199, 377, 521, 987, 1364, 2584, 3571, 6765, 9349, 17711, 24476, 46368, 64079, 121393, 167761, 317811, 439204, 832040, 1149851, 2178309, 3010349, 5702887, 7881196, 14930352, 20633239, 39088169
OFFSET
0,3
COMMENTS
Sequence relates bisections of Lucas and Fibonacci numbers (see also A098149).
Floretion Algebra Multiplication Program, FAMP code: 4jesleftforsumseq[ + .25'i + .25i' + .25'ii' + .25'jj' + .25'kk' + .25'jk' + .25'kj' + .25e], vesleftforsumseq = A000045, sumtype: (Y[15], *, inty*sum) (internal program code)
FORMULA
G.f.: (1+x+x^3)/((1+x-x^2)*(1-x-x^2)).
a(n) = ((3/20)*sqrt(5) + 3/4)*(1/2 + (1/2)*sqrt(5))^n + (-(3/20)*sqrt(5) + 3/4)*(1/2 - (1/2)*sqrt(5))^n + (-(3/20)*sqrt(5) - 1/4)*(-1/2 + (1/2)*sqrt(5))^n + ((3/20)*sqrt(5) - 1/4) *(-1/2 - (1/2)*sqrt(5))^n.
a(n) = 3*a(n-2) - a(n-4), n >= 4; a(0) = 1, a(1) = 1, a(2) = 3, a(3) = 4. - Daniel Forgues, May 07 2011
MAPLE
a:= n-> (<<0|1>, <-1|3>>^iquo(n, 2, 'r'). <<1, 3+r>>)[1, 1]:
seq(a(n), n=0..50); # Alois P. Heinz, May 02 2011
MATHEMATICA
LinearRecurrence[{0, 3, 0, -1}, {1, 1, 3, 4}, 40] (* Robert G. Wilson v, Aug 06 2018 *)
CoefficientList[Series[(1+x+x^3)/((1+x-x^2)(1-x-x^2)), {x, 0, 40}], x] (* Harvey P. Dale, Aug 10 2021 *)
PROG
(GAP) a:=[1, 1, 3, 4];; for n in [5..40] do a[n]:=3*a[n-2]-a[n-4]; od; a; # Muniru A Asiru, Aug 09 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Creighton Dement, Aug 14 2005
STATUS
approved