login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of (1-x^2*c(x)^4)/(1-3*x*c(x)^2), c(x) the g.f. of A000108.
1

%I #4 Feb 05 2015 14:10:45

%S 1,3,14,71,370,1950,10332,54895,292106,1555706,8289732,44186710,

%T 235575028,1256093084,6698073528,35719158591,190488112122,

%U 1015885525794,5417869631028,28894620083346,154102115782812

%N Expansion of (1-x^2*c(x)^4)/(1-3*x*c(x)^2), c(x) the g.f. of A000108.

%C Apply the inverse of the Riordan array (1/(1-x^2),x/(1+x)^2) to 3^n. Hankel transform is A001653.

%F Conjecture: +3*(n+1)*a(n) +2*(-26*n+7)*a(n-1) +16*(18*n-25)*a(n-2) +256*(-2*n+5)*a(n-3)=0. - _R. J. Mathar_, Feb 05 2015

%F Conjecture: 3*(2*n+3)*(n+1)*a(n) +2*(-28*n^2-52*n+21)*a(n-1) +32*(2*n+5)*(2*n-3)*a(n-2)=0. - _R. J. Mathar_, Feb 05 2015

%Y Cf. A090317.

%K easy,nonn

%O 0,2

%A _Paul Barry_, Mar 13 2009