login
A157731
a(n) = 18522*n - 10248.
3
8274, 26796, 45318, 63840, 82362, 100884, 119406, 137928, 156450, 174972, 193494, 212016, 230538, 249060, 267582, 286104, 304626, 323148, 341670, 360192, 378714, 397236, 415758, 434280, 452802, 471324, 489846, 508368, 526890, 545412, 563934
OFFSET
1,1
COMMENTS
The identity (388962*n^2 - 430416*n + 119071)^2 - (441*n^2 - 488*n + 135)*(18522*n - 10248)^2 = 1 can be written as A157732(n)^2 - A157730(n)*a(n)^2 = 1.
FORMULA
G.f.: x*(8274 + 10248*x)/(1 - x)^2.
a(n) = 2*a(n-1) - a(n-2).
MATHEMATICA
LinearRecurrence[{2, -1}, {8274, 26796}, 40]
18522 Range[40] - 10248 (* Harvey P. Dale, Nov 03 2017 *)
PROG
(Magma) I:=[8274, 26796]; [n le 2 select I[n] else 2*Self(n-1)-Self(n-2): n in [1..40]];
(PARI) a(n) = 18522*n - 10248.
CROSSREFS
Sequence in context: A166194 A269959 A188101 * A252581 A271748 A064014
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Mar 05 2009
STATUS
approved