OFFSET
1,1
COMMENTS
The identity (388962*n^2 - 430416*n + 119071)^2 - (441*n^2 - 488*n + 135)*(18522*n - 10248)^2 = 1 can be written as a(n)^2 - A157730(n)*A157731(n)^2 = 1.
This is the case s=21 and r=244 in the identity (2*(s^2*n-r)^2-1)^2 - (((s^2*n-r)^2-1)/s^2)*(2*s*(s^2*n-r))^2 = 1, where ((s^2*n-r)^2-1)/s^2 is an integer if r^2 == 1 (mod s^2). - Bruno Berselli, Apr 23 2018
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..10000
Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
FORMULA
G.f.: x*(77617 + 581236*x + 119071*x^2)/(1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
MATHEMATICA
LinearRecurrence[{3, -3, 1}, {77617, 814087, 2328481}, 40]
PROG
(Magma) I:=[77617, 814087, 2328481]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]];
(PARI) a(n) = 388962*n^2 - 430416*n + 119071.
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Mar 05 2009
STATUS
approved