login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A157732
a(n) = 388962*n^2 - 430416*n + 119071.
3
77617, 814087, 2328481, 4620799, 7691041, 11539207, 16165297, 21569311, 27751249, 34711111, 42448897, 50964607, 60258241, 70329799, 81179281, 92806687, 105212017, 118395271, 132356449, 147095551, 162612577, 178907527
OFFSET
1,1
COMMENTS
The identity (388962*n^2 - 430416*n + 119071)^2 - (441*n^2 - 488*n + 135)*(18522*n - 10248)^2 = 1 can be written as a(n)^2 - A157730(n)*A157731(n)^2 = 1.
This is the case s=21 and r=244 in the identity (2*(s^2*n-r)^2-1)^2 - (((s^2*n-r)^2-1)/s^2)*(2*s*(s^2*n-r))^2 = 1, where ((s^2*n-r)^2-1)/s^2 is an integer if r^2 == 1 (mod s^2). - Bruno Berselli, Apr 23 2018
FORMULA
G.f.: x*(77617 + 581236*x + 119071*x^2)/(1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
MATHEMATICA
LinearRecurrence[{3, -3, 1}, {77617, 814087, 2328481}, 40]
PROG
(Magma) I:=[77617, 814087, 2328481]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]];
(PARI) a(n) = 388962*n^2 - 430416*n + 119071.
CROSSREFS
Sequence in context: A206275 A249958 A232349 * A210123 A279893 A069044
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Mar 05 2009
STATUS
approved