OFFSET
1,1
COMMENTS
The identity (388962*n^2 - 430416*n + 119071)^2 - (441*n^2 - 488*n + 135)*(18522*n - 10248)^2 = 1 can be written as A157732(n)^2 - a(n)*A157731(n)^2 = 1.
441*a(n) + 1 is a square. - Bruno Berselli, Apr 23 2018
The continued fraction expansion of sqrt(a(n)) is [21n-12; {2, 1, 1, 1, 2, 41n-24}]. - Magus K. Chu, Sep 23 2022
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..10000
Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
FORMULA
G.f.: x*(88 + 659*x + 135*x^2)/(1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
a(n) = (9*n - 5)*(49*n - 27). - Bruno Berselli, Apr 23 2018
MATHEMATICA
LinearRecurrence[{3, -3, 1}, {88, 923, 2640}, 40]
PROG
(Magma) I:=[88, 923, 2640]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]];
(PARI) a(n) = 441*n^2 - 488*n + 135.
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Mar 05 2009
STATUS
approved