login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A157336
a(n) = 8*(8*n + 1).
2
72, 136, 200, 264, 328, 392, 456, 520, 584, 648, 712, 776, 840, 904, 968, 1032, 1096, 1160, 1224, 1288, 1352, 1416, 1480, 1544, 1608, 1672, 1736, 1800, 1864, 1928, 1992, 2056, 2120, 2184, 2248, 2312, 2376, 2440, 2504, 2568, 2632, 2696, 2760, 2824, 2888, 2952
OFFSET
1,1
COMMENTS
The identity (128*n^2+32*n+1)^2-(4*n^2+n)*(64*n+8)^2=1 can be written as A157337(n)^2-A007742(n)*a(n)^2=1. This is the case s=2 of the identity (8*n^2*s^4+8*n*s^2+1)^2-(n^2*s^2+n)*(8*n*s^3+4*s)^2=1. - Vincenzo Librandi, Jan 29 2012
Likewise, the immediate identity (a(n)^2+1)^2-(a(n)^2+2)*a(n)^2 = 1 can be rewritten as A158686(8*n+1)^2-(A158686(8*n+1)+1)*a(n)^2=1. - Bruno Berselli, Feb 13 2012
FORMULA
From Vincenzo Librandi, Jan 29 2012: (Start)
G.f.: 8*(1+7*x)/(x-1)^2. [corrected by Georg Fischer, May 12 2019]
a(n) = 2*a(n-1)-a(n-2). (End)
E.g.f.: 8*(1+8*x)*exp(x). - G. C. Greubel, Feb 01 2018
MATHEMATICA
Range[72, 5000, 64] (* Vladimir Joseph Stephan Orlovsky, Jul 16 2011 *)
LinearRecurrence[{2, -1}, {72, 136}, 50] (* Vincenzo Librandi, Jan 29 2012 *)
PROG
(Magma) I:=[72, 136]; [n le 2 select I[n] else 2*Self(n-1)-Self(n-2): n in [1..50]]; // Vincenzo Librandi, Jan 29 2012
(PARI) for(n=1, 40, print1(64*n + 8", ")); \\ Vincenzo Librandi, Jan 29 2012
CROSSREFS
Sequence in context: A250772 A345541 A345794 * A369333 A369334 A060661
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Feb 27 2009
STATUS
approved