login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A158686
a(n) = 64*n^2 + 1.
4
1, 65, 257, 577, 1025, 1601, 2305, 3137, 4097, 5185, 6401, 7745, 9217, 10817, 12545, 14401, 16385, 18497, 20737, 23105, 25601, 28225, 30977, 33857, 36865, 40001, 43265, 46657, 50177, 53825, 57601, 61505, 65537, 69697, 73985, 78401, 82945, 87617, 92417, 97345, 102401
OFFSET
0,2
COMMENTS
The identity (64n^2+1)^2 - (1024n^2+32)*(2n)^2 = 1 can be written as a(n)^2 - A158685(n)*(A005843(n))^2 = 1.
LINKS
Vincenzo Librandi, X^2-AY^2=1, Math Forum, 2007. [Wayback Machine link]
FORMULA
G.f.: -(1+62*x+65*x^2)/(x-1)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
From Amiram Eldar, Mar 21 2023: (Start)
Sum_{n>=0} 1/a(n) = (coth(Pi/8)*Pi/8 + 1)/2.
Sum_{n>=0} (-1)^n/a(n) = (cosech(Pi/8)*Pi/8 + 1)/2. (End)
MATHEMATICA
64 Range[0, 40]^2 + 1 (* or *) LinearRecurrence[{3, -3, 1}, {1, 65, 257}, 40] (* Harvey P. Dale, Jan 24 2012 *)
CoefficientList[Series[- (1 + 62 x + 65 x^2) / (x - 1)^3, {x, 0, 40}], x] (* Vincenzo Librandi, Sep 11 2013 *)
PROG
(Magma) [64*n^2+1: n in [0..40]]; // Vincenzo Librandi, Sep 11 2013
(PARI) a(n)=64*n^2+1 \\ Charles R Greathouse IV, Jun 17 2017
CROSSREFS
Sequence in context: A237039 A305157 A038637 * A115342 A360819 A036547
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Mar 24 2009
EXTENSIONS
Comment rewritten, a(0) added and formula replaced by R. J. Mathar, Oct 22 2009
STATUS
approved