OFFSET
1,1
COMMENTS
Such numbers m correspond to pairs of equal Egyptian fractions of length 2, since a*b*(c+d) = (a+b)*c*d is equivalent to 1/a + 1/b = 1/c + 1/d.
Numbers of the form t * k^3, where t is a term of A369334 and k is a positive integer.
If m belongs to this sequence, then so does m*k^3 for any positive integer k.
EXAMPLE
72 is a term since 72 = 3*3*(2+6) = (3+3)*2*6.
PROG
(PARI) { find_abcd(m) = my(r); fordiv(m, a, if(2*a*a>m, break); fordiv(m\a, b, if(4*a^2*b^2 > m*(a+b), break); if(b<a || m%(a+b), next); if(a*b*(a+b)==m, next); r=select(x->denominator(x)==1, nfroots(, x^2 - m\a\b*x + m\(a+b))); if(#r==1, r=[r[1], r[1]]); if(#r==2, return([a, b, r[1], r[2]])); )); []; }
CROSSREFS
KEYWORD
nonn
AUTHOR
Max Alekseyev, Jan 20 2024
STATUS
approved