login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A088915
Nonnegative numbers of the form mn(m+n) with integers m,n.
5
0, 2, 6, 12, 16, 20, 30, 42, 48, 54, 56, 70, 72, 84, 90, 96, 110, 120, 126, 128, 132, 156, 160, 162, 180, 182, 198, 210, 240, 250, 264, 272, 286, 306, 308, 324, 330, 336, 342, 380, 384, 390, 420, 432, 448, 462, 468, 506, 510, 520, 540, 546, 552, 560, 576, 600
OFFSET
1,2
COMMENTS
These are the values of 3 X 3 Vandermonde determinants with integer entries.
Solutions (m,n) are integral points on the elliptic curve m*n*(m+n)=a(n). Entries with record number of solutions are: 2, 6, 30, 240, 6480, 18480, 147840, 3991680 Possibly not minimal: a(n)=988159766157083520000000 has 22 solutions a(n)=2880932262848640000 20 solutions Multiplication of a(n) by u^3 does not decrease the number of solutions. [From Georgi Guninski, Oct 25 2010]
Contribution from R. J. Mathar, Oct 24 2010: (Start)
Examples of entries with more than one representation are:
- 30 = 5*1*6 = 3*2*5,
- 240 = 15*1*16 = 10*2*12 = 6*4*10, 6480 = 80*1*81 = 45*3*48 = 30*6*36 = 18*12*30,
- 18408 = 77*3*80 = 66*4*70 = 48*7*55 = 30*14*44 = 22*20*42,
- 147840 = 384*1*385 = 154*6*160 = 132*8*140 = 96*14*110 = 60*28*88 = 44*40*84 (6 representations),
- 110270160 = 6*4284*4290 = 60*1326*1386 = 66*1260*1326 = 102*990*1092 = ... with 8 representations. (End)
FORMULA
a(n) = 2 * A121741(n-1) for n>=2.
MAPLE
filter:= proc(n) local d, nd, x, y;
d:= numtheory:-divisors(n);
nd:= nops(d);
for x from 1 to nd do
for y from 1 to x do
if d[x]*d[y]*(d[x]+d[y])=n then return true fi
od od:
false
end proc:
filter(0):= 0:
select(filter, [seq(i, i=0..1000, 2)]); # Robert Israel, Jul 24 2018
MATHEMATICA
Select[Range[0, 600], {} != FindInstance[m n (m + n) == # && n >= 0 && m >= 0, {m, n}, Integers, 1] &] (* Giovanni Resta, Jul 24 2018 *)
PROG
(Python)
from itertools import count, islice
from sympy import divisors, integer_nthroot
def A088915_gen(startvalue=0): # generator of terms >= startvalue
for m in count(max(startvalue, 0)):
if m == 0:
yield m
else:
for k in divisors(m, generator=True):
p, q = integer_nthroot(k**4+(k*m<<2), 2)
if q and not (p-k**2)%(k<<1):
yield m
break
A088915_list = list(islice(A088915_gen(), 20)) # Chai Wah Wu, Jul 03 2023
CROSSREFS
Cf. A121741.
Sequence in context: A143408 A191331 A367465 * A084790 A130237 A053457
KEYWORD
nonn
AUTHOR
Yuval Dekel (dekelyuval(AT)hotmail.com), Nov 29 2003
EXTENSIONS
More terms from Hugo Pfoertner, Apr 10 2004
STATUS
approved